UPDATED. 2020-12-04 18:22 (금)
KAIST, AI 이용해 숨겨진 소재 탐색하는 결정구조예측 기술 개발
KAIST, AI 이용해 숨겨진 소재 탐색하는 결정구조예측 기술 개발
  • 김정호 기자
  • 승인 2020.10.27 13:00
  • 댓글 0
이 기사를 공유합니다

역설계 방법 통해 새로운 유망 수소생산 촉매 소재도 개발
개발된 조성-조건 기반 고체 결정 구조 생성모델 . 무기화합물의 조성정보와 구조정보를 동시에 학습하는 생성모델을 구축하고, 기존의 소재 데이터베이스를 학습해 이를 바탕으로 제한돼 있던 화학적 공간을 선택적으로 자유롭게 확장시켜 기존에는 발견할 수 없었던 숨겨진 유망한 신물질을 새롭게 발견할 수 있다.
개발된 조성-조건 기반 고체 결정 구조 생성모델 . 무기화합물의 조성정보와 구조정보를 동시에 학습하는 생성모델을 구축하고, 기존의 소재 데이터베이스를 학습해 이를 바탕으로 제한돼 있던 화학적 공간을 선택적으로 자유롭게 확장시켜 기존에는 발견할 수 없었던 숨겨진 유망한 신물질을 새롭게 발견할 수 있다.

KAIST는 생명화학공학과 정유성 교수 연구팀이 인공지능(AI) 기술을 이용해 숨겨진 소재 공간을 탐색, 숨겨진 새로운 물질을 예측하는 기술을 개발하는 데 성공했다고 27일 밝혔다.

연구팀이 개발한 소재 역설계(Materials Inverse Design) 방법은 데이터 학습을 통해 주어진 조성을 갖는 결정구조를 새롭게 생성하게 함으로써 기존 데이터베이스에는 존재하지 않던 신물질을 발견할 수 있도록 한다.

특히 기존 역설계 방법에서는 원하는 조성을 제어할 수 없지만 연구팀이 개발한 역설계 방법은 원하는 조성을 제어함으로써 숨어있는 화학 공간을 효율적으로 탐색해 물질을 설계할 수 있다.

이번 정 교수팀의 연구성과인 결정구조 예측기술은 인공지능 생성모델인 적대적 생성 신경망(GAN)을 기반으로 개발됐다.

또 기존 복잡한 3차원 이미지 기반 물질 표현자의 단점을 해소하기 위해 비교적 간단한 원자들의 3차원 좌표를 기반으로 한 물질 표현자를 사용했다.

연구팀은 이번 연구를 통해 개발한 소재 역설계 방법을 활용, 빛을 이용한 수소생산 촉매로 활용될 수 있는 마그네슘-망간-산화물 기반의 광촉매 물질의 결정구조를 예측하는 데도 성공했다.

기존 데이터베이스에 존재하지 않는 조성들을 생성조건으로 다양한 마그네슘-망간-산화물 구조를 생성한 결과, 기존에 알려지지 않았으면서 광촉매로서 전도유망한 특성을 갖는 신물질을 다수 발견했다.

정유성 교수는 "광촉매 물질의 설계에 적용한 이번 소재 설계 프레임워크는 화합물의 화학적 조성뿐 아니라 사용자가 원하는 특정 물성을 갖는 소재를 역설계하는데 적용이 가능하다ˮ면서 "여러 소재 응용 분야에서 활용될 수 있을 것으로 기대된다ˮ고 말했다.

이 연구성과는 미국화학회(ACS)가 발행하는 국제학술지 `ACS 센트럴 사이언스(Central Science)' 최근호(8월호)에 실렸다.


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.

  • 서울시 영등포구 여의서로 43 (여의도동 한서리버파크 빌딩) 916호
  • 대표전화 : 02-780-8101~2
  • 팩스 : 02-780-8103
  • 청소년보호책임자 : 윤 원창
  • 법인명 : 테크데일리 주식회사
  • 제호 : 테크데일리(TechDaily)
  • 등록번호 : 서울 아 05225
  • 등록일 : 2018-06-01
  • 발행일 : 2018-06-01
  • 발행인 : 문 창남
  • 편집인 : 윤 원창
  • 테크데일리(TechDaily) 모든 콘텐츠(영상,기사, 사진)는 저작권법의 보호를 받은바, 무단 전재와 복사, 배포 등을 금합니다.
  • Copyright © 2020 테크데일리(TechDaily). All rights reserved. mail to news@techdaily.co.kr
ND소프트